Machine Learning for High Throughput HRTEM Analysis
نویسندگان
چکیده
منابع مشابه
Machine Learning for High-Throughput Stress Phenotyping in Plants.
Advances in automated and high-throughput imaging technologies have resulted in a deluge of high-resolution images and sensor data of plants. However, extracting patterns and features from this large corpus of data requires the use of machine learning (ML) tools to enable data assimilation and feature identification for stress phenotyping. Four stages of the decision cycle in plant stress pheno...
متن کاملUnderstanding protein dispensability through machine-learning analysis of high-throughput data
MOTIVATION Protein dispensability is fundamental to the understanding of gene function and evolution. Recent advances in generating high-throughput data such as genomic sequence data, protein-protein interaction data, gene-expression data and growth-rate data of mutants allow us to investigate protein dispensability systematically at the genome scale. RESULTS In our studies, protein dispensab...
متن کاملOn-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets
Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show...
متن کاملA Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources
The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...
متن کاملActive Learning for High Throughput Screening
An important task in many scientific and engineering disciplines is to set up experiments with the goal of finding the best instances (substances, compositions, designs) as evaluated on an unknown target function using limited resources. We study this problem using machine learning principles, and introduce the novel task of active k-optimization. The problem consists of approximating the k bes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2019
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s143192761900148x